Marlowe

Smart Contracts

Marlowe

A SPECIAL-PURPOSE LANGUAGE
FOR FINANCIAL CONTRACTS

Designed for users, as well as developers.

Designed for maximum assurance.

Assurance

CONTRACTS DO WHAT THEY SHOULD ...
... AND NOT WHAT THEY SHOULDN'T

Language as simple as it can be.
Contracts can be read and simulated.
Before running, can explore all behaviour.

System can be proved safe in various ways.

® © 6 0 06 0 0 0 0 0 0 0 0 0 06 0 O O O O O O 0 O 0 O O O O O O 0 O O O O O O O O O O O 0 O O O O O O O O 0 O 0 0 O O O O O 0 O O 0 O O O O O O 0 O 0 O 0 0 O O O 0 O O O O 0 0O 0 0 O O O 0 O 0 O O 0 O O O 0 O 0 O 0O 0 O O O 0O 0 0 0 0O 0 0 0 0 0 0 0

[,
n

stick

A contract could ...

A CONTRACT IS JUST A PROGRAM
RUNNING ON A BLOCKCHAIN

... run forever.
... wait for an input forever.
... terminate holding assets.

... double spend” assets.

Designed for safety

Contracts are finite. No recursion or loops (in Marlowe).

Designed for safety

Contracts are finite. No recursion or loops (in Marlowe).

Contracts will terminate ... Timeouts on actions: choice, deposit, ...

Designed for safety

Contracts are finite. No recursion or loops (in Marlowe).
Contracts will terminate ... Timeouts on actions: choice, deposit, ...

.. with a defined lifetime. Read off from timeouts.

Designed for safety

Contracts are finite. No recursion or loops (in Marlowe).
Contracts will terminate ... Timeouts on actions: choice, deposit, ...
.. With a defined lifetime. Read off from timeouts.

No assets retained on close. (Local)accounts refunded on close.

Designed for safety

Contracts are finite. No recursion or loops (in Marlowe).

Contracts will terminate ... Timeouts on actions: choice, deposit, ...
.. with a defined lifetime. Read off from timeouts.

No assets retained on close. (Local)accounts refunded on close.

Conservation of value. Underlying blockchain

Designed for safety

Contracts are finite. No recursion or loops (in Marlowe).

Contracts will terminate ... Timeouts on actions: choice, deposit, ...
.. With a defined lifetime. Read off from timeouts.

No assets retained on close. (Local)accounts refunded on close.

Conservation of value. Underlying blockchain

The Marlowe language

Contracts are finite.
Close

| Pay Party Payee Value Contract

| If Observation Contract Contract

| When [Case Action Contract]
Timeout Contract

No assets retained on close. | Let Valueld Value Contract

| Assert Observation Contract

data Contract
Contracts will terminate ...

.. with a defined lifetime.

Conservation of value.

The Marlowe language

Contracts are finite.
data Contract Cm

| Pay Party Payee Value Contract

| If Observation Contract Contract

| When [Case Action Contract]
Timeout Contract

No assets retained on close. | Let Valueld Value Contract

| Assert Observation Contract

Contracts will terminate ...

.. with a defined lifetime.

Conservation of value.

The Marlowe language

Contracts are finite.
data Contract = Close \

| Pay Party Payee Value Contract

| If Observation Contract Contract

| When [Case Action Contract]
Timeout Contract

No assets retained on close. | Let Valueld Value Contract

| Assert Observation Contract

Contracts will terminate ...

.. with a defined lifetime.

Conservation of value.

The Marlowe language

Contracts are finite.
data Contract = Close \

| Pay Party Payee Value Contract

| If Observation Contract Contract

| When [Case Action Contract]
Timeout Contract

No assets retained on close. | Let Valueld Value Contract

| Assert Observation Contract

Contracts will terminate ...

.. with a defined lifetime.

Conservation of value.

The Marlowe language

Contracts are finite.
data Contract = Close \

| Pay Party Payee Value Contract

| If Observation Contract Contract

| When [Case Action Contract]
Timeout Contract

No assets retained on close. | Let Valueld Value Contract

| Assert Observation Contract

Contracts will terminate ...

.. with a defined lifetime.

Conservation of value.

The Marlowe language

Contracts are finite.
data Contract = Close

| Pay Party Payee Value Contract
*\ If Observation Contract Contract
| When [Case Action Contract]
Timeout Contract
No assets retained on close. | Let Valueld Value Contract
| Assert Observation Contract

Contracts will terminate ...

.. with a defined lifetime.

Conservation of value.

The Marlowe language

Contracts are finite.

data Contract

Contracts will terminate ...

.. with a defined lifetime.

No assets retained on close.

Conservation of value.

Close

Pay Party Payee Value Contract

I&e rvation Contract Contract

When [Case Action Contract]
Timeout Contract

' Let Valueld Value Contract

| Assert Observation Contract

The Marlowe language

Contracts are finite.
Close

| Pay Party Payee Value Contract

| If ObseMion Contract Contract

| When [Case Action Contract]
Timeout Contract

No assets retained on close. | Let Valueld Value Contract

| Assert Observation Contract

data Contract
Contracts will terminate ...

.. with a defined lifetime.

Conservation of value.

The Marlowe language

Contracts are finite.
Close

| Pay Party Payee Value Contract

| If Observation tract Contract

| When [Case Action Contract]
Timeout Contract

No assets retained on close. | Let Valueld Value Contract

| Assert Observation Contract

data Contract
Contracts will terminate ...

.. with a defined lifetime.

Conservation of value.

The Marlowe language

Contracts are finite.
Close

| Pay Party Payee Value Contract
| If Observation Contract Contract
| When [Case Action Contract]
~ Timeout Contract
No assets retained on close. | Le? JalueId Value Contract
| Assert Observation Contract

data Contract
Contracts will terminate ...

.. with a defined lifetime.

Conservation of value.

The Marlowe language

Contracts are finite.
Close

| Pay Party Payee Value Contract

| If Observation Contract Contract

| When [Case Action Contract]
Timeout Contract

No assets retained on close. | Let ValueIld /alue Contract

| Assert Observation Contract

data Contract
Contracts will terminate ...

.. with a defined lifetime.

Conservation of value.

The Marlowe language

Contracts are finite. //
data Contract = (Close
| Pay Party Payee Value Contract
| If Observation Contract Contract
| When [Case Action Contract]
Timeout Contract
No assets retained on close. | Let Valueld Value Contract

| Assert Observation Contract

Contracts will terminate ...

.. with a defined lifetime.

Conservation of value.

finance.lo

Marlowe Suite

marlowe-
. . Run
finance.lo
-nd users:
obtain and

run contracts
distributed

Marlowe Suite

marlowe-
: : Run
finance.lo
-nd users: Contracts
obtain and up and down
run contracts loaded, with

distributed assurances

Marlowe Suite

marlowe-
: : Run Play
finance.lo
-nd users: Contracts Contracts
obtain and up and down can be
run contracts loaded, with simulated

distributed assurances interactively

Marlowe Suite

e Run Play Build
finance.lo
-Nnd users: Contracts Contracts Contracts
obtain and up and down can be built in code,
run contracts loaded, with simulated visually, and
distributed assurances interactively embedded

Currently combined in
the Marlowe Playground

Marlowe Suite

MEHOWE Run Play Build
finance.io
-Nnd Users: Contracts Contracts Contracts
obtain and up and down can be built in code,
run contracts loaded, with simulated visually, and
distributed assurances interactively embedded

Currently combined in
the Marlowe Playground

Haskell

Marlowe
Real world Run + wallet

Plutus

Cardano node

Validation is through
the Marlowe interpreter,
l.e. a Plutus contract.

O

¥ ‘ DA
|

?)

Validation is through
the Marlowe interpreter,
l.e. a Plutus contract.

Transactions built by
Marlowe Run + wallet

O’\
O~

Y% Marlowe
Run

O

¥ ‘ DA
|

?)

Validation is through
the Marlowe interpreter,
l.e. a Plutus contract.

Transactions built by
Marlowe Run + wallet

O’\
O~

Y% Marlowe
Run

—— | Carry a step of the contract with no inputs
reduceContractStep :: Environment —> State —> Contract —> ReduceStepResult
reduceContractStep env state contract = case contract of

Close —> case refundOne (accounts state) of
Just ((party, money), newAccounts) —> let
newState = state { accounts = newAccounts }

in Reduced ReduceNoWarning (ReduceWithPayment (Payment party money)) newState Close
Nothing —> NotReduced

Pay acclId payee val cont —-> let
amountToPay = evalValue env state val
in if amountToPay <= 0

then Reduced (ReduceNonPositivePay accld payee amountToPay) ReduceNoPayment state cont

else let
balance = moneyInAccount accId (accounts state) —— always positive
moneyToPay = Lovelace amountToPay —— always positive
paidMoney = min balance moneyToPay —— always positive
newBalance = balance - paidMoney —- always positive
newAccs = updateMoneyInAccount accId newBalance (accounts state)

warﬁggg = 1if paidMoney < moneyToPay
then ReducePartialPay accld payee paidMoney moneyToPay
else ReduceNoWarning

(payment, finalAccs) = giveMoney payee paidMoney newAccs

WIWANNNNY

in Reduced warning payment (state { accounts = finalAccs }) cont

Semantics = executable specification in Haskell

Denotational semantics Definitional interpreter

Semantics = executable specification in Haskell

Denotational semantics Definitional interpreter

Completeness Must cover all cases

Semantics = executable specification in Haskell

Denotational semantics Definitional interpreter
Completeness Must cover all cases

Engagement Can run the semantics

Repurpose the semantics

In Isabelle For reasoning and proof
In Plutus (= Haskell) For implementation on blockchain

In PureScript For browser-based simulation

Aside: how to verify that these versions are the same?

Extract Haskell code from the Isabelle version.
Test this against the original Haskell version on random contracts.

Eventually use a Haskell in JS implementation to replace the PureScript.

Usable

CONTRACT WRITING AND
UNDERSTANDING

Marlowe contracts can be authored in
various different ways.

Marlowe contracts can be explored
before they are run in a simulation.

Usable

=
=
<
©
=z
=
o
=
[—
O
<
o
[—
=
O
O

UNDERSTANDING

hen Consart) eise Constane () | COMNNS S8

ce O by W | BB Constart ©)

Visual editor

DF

Haskell Editor JS Editor

Visual editor Fmbedded DSL

+
M

DF

Haskell Editor JS Editor

Visual editor Embedded DSL Contract generator

+
M

W1 MARLOWE PLAYGROUND

New Project Open Open Example Rename Save Save As...

1 When

2 [Case

3 (Deposit

4 (Role "Seller")

5 (Role "Buyer")

6 (Token " ")

7 (Constant 100000000)

8)

9 (When

10 [Case

11 (Choice

12 (Choiceld

13 "Everything is alright"
14 (Role "Buyer")

15)

16 [Bound 0 0]

17)

18 Close , Case

19 (Choice
20 (Choiceld
21 "Report problem"
22 (Role "Buyer")
23)
24 [Bound 1 1]
25)
26 (Pay
27 (Role "Seller")
28 (Account (Role "Buyer"))
29 (Token "™ ")
30 (Constant 100000000)
31 (When
32 [Case
33 (Choice
34 (Choiceld
35 "Confirm problem"
36 (Role "Seller")
37)
38 [Bound 1 1]
39)
40 Close , Case
41 (Choice

AN [FflhAas: AATA
Current State
cardano.org | iohk.io

Escrow with collateral *

© 2020 IOHK Ltd

Tutorials Actus Labs

current slot: 0 expiration slot: 17
ACTIONS

Participant Buyer “The party that pays for the item on sale.,

Deposit 100,000,000 units of ADA into account of Seller as
Buyer

Other Actions

Move to slot 10 2

TRANSACTION LOG

Action Slot
Deposit 1,000,000 units of ADA into account of Seller as Seller 0

Deposit 1,000,000 units of ADA into account of Buyer as Buyer 0

Telegram | Twitter

Tasks Balances

Completed

(%2
—
D
©
'

Seller made a deposit of A
1.000000 into their account on 31
May 2021 between 08:44 and
08:45

Tasks Balances
G Buyer

You made a deposit of A
1.000000 into your account on 31
May 2021 between 08:45 and
08:46

Escrow with collateral
ESCROW

Tasks Balances

v Completed

You made a deposit of A
1,000.000000 into Seller's
account on 31 May 2021 between
08:45 and 08:47

Tasks Balances
G Buyer

You chose O for "Everything is
alright" on 31 May 2021 between
08:45 and 08:49

Tasks Balances

Ste p 5 Contract closed

V)

This contract is now closed
There are no tasks to complete

Assurance

USING THE POWER OF LOGIC

Static analysis: automatic verification
of properties of individual contracts.

Verification: machine-supported proof
of system and contract properties.

Static analysis

Can check all execution paths through a Marlowe contract.
All choices, all choices of slots for transaction submission.
Example: is it possible there may not be enough to fulfil a Pay construct?

Constructive: if it is, then here's a counter-example.

Static analysis

Can check all execution paths through a Marlowe contract

All choices, all choices of slots for transaction submission

Example: is it possible there may not be enough to fulfil a

Constructive: if it is, then here's a counter-example.

Pay construct?

O© 00 N O U B

(Role “allice’) _=y
(Role "alice") _ .. .
(Token "* ") — Participant alice
(Constant 450) = Deposit 450 units of Al

)

Account (Role "alice")

(When g "alice")

10 [Case —
11 (Choice = Other Actions
12 (Choiceld g
13 "choice" .- Move to slot|10
14 (Role "alice") =
15) oy
16 [Bound 0 1] ™ Undo
17)
18 (When
19 [Case
20 (Choice

Current State Static Analysis Warnings Errors Logs Marlowe

Warning Analysis Result: Pass Marlowe is designed tc

, : , : , : execution of financial
Static analysis could not find any execution that results in any warning.

blockchain, and specifi

Cardano. Contracts are

Analyse for warnings Analyse reachability

together a small numb
in combination can be

many different kinds @

O 00 N O U B

10
11
12
13
14
15
16
17
18
19
20

Warning Analysis Result: Warnings Found

)
(When
[Case
(Choice

\ROLE allce
(Role "alice")
(Token i llll)
(Constant 40)

)

(Choiceld

)

"choice"
(Role "alice")

[Bound 0 1]

)
(When

[Case

v Current State

(Choice

r P Y SN RS, P |

Static Analysis

Static analysis found the following counterexample:

* Warnings issued:

1. TransactionPartialPay - The contract is supposed to make a payment of 450 units of ADA from account of (Role "alice") to party (Role "bob")

but there is only 40.
* Initial slot: 0

e Offending transaction list:

1. Transaction with slot interval 0 to 3 and inputs:

a. IDeposit - Party (Role "alice") deposits 40 units of ADA into account of (Role "alice").

2. Transaction with slot interval 1 to 2 and inputs:

Warnings (4)

a. IChoice - Party (Role "alice") chooses number 0 for choice "choice".

3. Transaction with slot interval 1 to 1 and inputs:

a. IChoice - Party (Role "bob") chooses number 0 for choice "choice".

Analyse for warnings

Analyse reachability

Errors

Logs

Participant alice

Deposit 40 units of ADi
(Role "alice") as (Role

Other Actions

Move to slot|10

Undo

Modelling co
L1 Marlowe

Marlowe is designed tc

execution of financial

blockchain, and specifi

Cardano. Contracts are
together a small numb
in combination can be

many different kinds o

The system is safe

Prove properties of the Marlowe
system once and for all.

Theorem: Accounts are never -ve.

Theorem: Money preservation:

money_in = money_in_accounts +
money_out

Theorem: Close produces no warnings.

Theorem: Static analysis is sound and
complete.

And we can do the same for individual
contracts and templates too.

The system is safe

Prove properties of the Marlowe Theorem: Close produces no warnings.

system once and for all.

Theorem: Static analysis is sound and
Theorem: Accounts are never -ve. complete.

Theorem: Money preservation: And we can do the same for individual

contracts and templates too.

money_in = money_in_accounts +
money_out

More information about Marlowe

The marlowe and plutus github repositories.
The |IOHK research library: search for “Marlowe”.
Online tutorial in the Marlowe Playground.

Alex's presentation coming up next.

Marlowe

A SPECIAL-PURPOSE LANGUAGE
FOR FINANCIAL CONTRACTS

Designed for users, as well as developers.

Designed for maximum assurance.

Assurance

CONTRACTS DO WHAT THEY SHOULD ...
... AND NOT WHAT THEY SHOULDN'T

Language as simple as it can be.
Contracts can be read and simulated.
Before running, can explore all behaviour.

System can be proved safe in various ways.

