

Marlowe
A SPECIAL-PURPOSE LANGUAGE
FOR FINANCIAL CONTRACTS

Designed for users, as well as developers.

Designed for maximum assurance.

Assurance
CONTRACTS DO WHAT THEY SHOULD …
 … AND NOT WHAT THEY SHOULDN'T

Language as simple as it can be.

Contracts can be read and simulated.

Before running, can explore all behaviour.

System can be proved safe in various ways.

What does a financial
contract do?

sell

stick

sell

stick

sell

stick

sell

stick

Design

A contract could …
A CONTRACT IS JUST A PROGRAM
RUNNING ON A BLOCKCHAIN

… run forever.

… wait for an input forever.

… terminate holding assets.

… “double spend” assets.

Designed for safety

Contracts are finite.

No recursion or loops (in Marlowe).

Designed for safety

Contracts are finite.

Contracts will terminate …

No recursion or loops (in Marlowe).

Timeouts on actions: choice, deposit, …

Designed for safety

Contracts are finite.

Contracts will terminate …

 … with a defined lifetime.

No recursion or loops (in Marlowe).

Timeouts on actions: choice, deposit, …

Read off from timeouts.

Designed for safety

Contracts are finite.

Contracts will terminate …

 … with a defined lifetime.

No assets retained on close.

No recursion or loops (in Marlowe).

Timeouts on actions: choice, deposit, …

Read off from timeouts.

(Local) accounts refunded on close.

Designed for safety

Contracts are finite.

Contracts will terminate …

 … with a defined lifetime.

No assets retained on close.

Conservation of value.

No recursion or loops (in Marlowe).

Timeouts on actions: choice, deposit, …

Read off from timeouts.

(Local) accounts refunded on close.

Underlying blockchain

Designed for safety

Contracts are finite.

Contracts will terminate …

 … with a defined lifetime.

No assets retained on close.

Conservation of value.

No recursion or loops (in Marlowe).

Timeouts on actions: choice, deposit, …

Read off from timeouts.

(Local) accounts refunded on close.

Underlying blockchain

The Marlowe language

Contracts are finite.

Contracts will terminate …

 … with a defined lifetime.

No assets retained on close.

Conservation of value.

data Contract = Close
 | Pay Party Payee Value Contract
 | If Observation Contract Contract
 | When [Case Action Contract]
 Timeout Contract
 | Let ValueId Value Contract
 | Assert Observation Contract

data Contract = Close
 | Pay Party Payee Value Contract
 | If Observation Contract Contract
 | When [Case Action Contract]
 Timeout Contract
 | Let ValueId Value Contract
 | Assert Observation Contract

The Marlowe language

Contracts are finite.

Contracts will terminate …

 … with a defined lifetime.

No assets retained on close.

Conservation of value.

data Contract = Close
 | Pay Party Payee Value Contract
 | If Observation Contract Contract
 | When [Case Action Contract]
 Timeout Contract
 | Let ValueId Value Contract
 | Assert Observation Contract

The Marlowe language

Contracts are finite.

Contracts will terminate …

 … with a defined lifetime.

No assets retained on close.

Conservation of value.

data Contract = Close
 | Pay Party Payee Value Contract
 | If Observation Contract Contract
 | When [Case Action Contract]
 Timeout Contract
 | Let ValueId Value Contract
 | Assert Observation Contract

The Marlowe language

Contracts are finite.

Contracts will terminate …

 … with a defined lifetime.

No assets retained on close.

Conservation of value.

The Marlowe language

data Contract = Close
 | Pay Party Payee Value Contract
 | If Observation Contract Contract
 | When [Case Action Contract]
 Timeout Contract
 | Let ValueId Value Contract
 | Assert Observation Contract

Contracts are finite.

Contracts will terminate …

 … with a defined lifetime.

No assets retained on close.

Conservation of value.

The Marlowe language

data Contract = Close
 | Pay Party Payee Value Contract
 | If Observation Contract Contract
 | When [Case Action Contract]
 Timeout Contract
 | Let ValueId Value Contract
 | Assert Observation Contract

Contracts are finite.

Contracts will terminate …

 … with a defined lifetime.

No assets retained on close.

Conservation of value.

The Marlowe language

data Contract = Close
 | Pay Party Payee Value Contract
 | If Observation Contract Contract
 | When [Case Action Contract]
 Timeout Contract
 | Let ValueId Value Contract
 | Assert Observation Contract

Contracts are finite.

Contracts will terminate …

 … with a defined lifetime.

No assets retained on close.

Conservation of value.

The Marlowe language

data Contract = Close
 | Pay Party Payee Value Contract
 | If Observation Contract Contract
 | When [Case Action Contract]
 Timeout Contract
 | Let ValueId Value Contract
 | Assert Observation Contract

Contracts are finite.

Contracts will terminate …

 … with a defined lifetime.

No assets retained on close.

Conservation of value.

The Marlowe language

data Contract = Close
 | Pay Party Payee Value Contract
 | If Observation Contract Contract
 | When [Case Action Contract]
 Timeout Contract
 | Let ValueId Value Contract
 | Assert Observation Contract

Contracts are finite.

Contracts will terminate …

 … with a defined lifetime.

No assets retained on close.

Conservation of value.

The Marlowe language

data Contract = Close
 | Pay Party Payee Value Contract
 | If Observation Contract Contract
 | When [Case Action Contract]
 Timeout Contract
 | Let ValueId Value Contract
 | Assert Observation Contract

Contracts are finite.

Contracts will terminate …

 … with a defined lifetime.

No assets retained on close.

Conservation of value.

The Marlowe language

data Contract = Close
 | Pay Party Payee Value Contract
 | If Observation Contract Contract
 | When [Case Action Contract]
 Timeout Contract
 | Let ValueId Value Contract
 | Assert Observation Contract

Contracts are finite.

Contracts will terminate …

 … with a defined lifetime.

No assets retained on close.

Conservation of value.

The Marlowe language

data Contract = Close
 | Pay Party Payee Value Contract
 | If Observation Contract Contract
 | When [Case Action Contract]
 Timeout Contract
 | Let ValueId Value Contract
 | Assert Observation Contract

Contracts are finite.

Contracts will terminate …

 … with a defined lifetime.

No assets retained on close.

Conservation of value.

Product

marlowe-
finance.io Run Market Play Build

Marlowe Suite

marlowe-
finance.io Run Market Play Build

Marlowe Suite

End users:
obtain and

run contracts
distributed

marlowe-
finance.io Run Market Play Build

Marlowe Suite

End users:
obtain and

run contracts
distributed

Contracts
up and down
loaded, with
assurances

marlowe-
finance.io Run Market Play Build

Marlowe Suite

End users:
obtain and

run contracts
distributed

Contracts
up and down
loaded, with
assurances

Contracts
can be

simulated
interactively

marlowe-
finance.io Run Market Play Build

Marlowe Suite

End users:
obtain and

run contracts
distributed

Contracts
up and down
loaded, with
assurances

Contracts
can be

simulated
interactively

Contracts
built in code,
visually, and
embedded

Currently combined in
the Marlowe Playground

marlowe-
finance.io Run Market Play Build

Marlowe Suite

End users:
obtain and

run contracts
distributed

Contracts
up and down
loaded, with
assurances

Contracts
can be

simulated
interactively

Contracts
built in code,
visually, and
embedded

Currently combined in
the Marlowe Playground

Engineering

Haskell

Cardano node

Plutus

Marlowe
Real world Run + wallet

Validation is through
the Marlowe interpreter,
i.e. a Plutus contract.

Validation is through
the Marlowe interpreter,
i.e. a Plutus contract.

Transactions built by
Marlowe Run + wallet

Validation is through
the Marlowe interpreter,
i.e. a Plutus contract.

Transactions built by
Marlowe Run + wallet

System design

Semantics = executable specification in Haskell

Denotational semantics

Definitional interpreter

Semantics = executable specification in Haskell

Denotational semantics

Completeness

Definitional interpreter

Must cover all cases

Semantics = executable specification in Haskell

Denotational semantics

Completeness

Engagement

Definitional interpreter

Must cover all cases

Can run the semantics

Repurpose the semantics

In Isabelle

In Plutus (≃ Haskell)

In PureScript

For reasoning and proof

For implementation on blockchain

For browser-based simulation

Aside: how to verify that these versions are the same?

Extract Haskell code from the Isabelle version.

Test this against the original Haskell version on random contracts.

Eventually use a Haskell in JS implementation to replace the PureScript.

Usable

Usable
CONTRACT WRITING AND
UNDERSTANDING

Marlowe contracts can be authored in
various different ways.

Marlowe contracts can be explored
before they are run in a simulation.

Usable
CONTRACT WRITING AND
UNDERSTANDING

Marlowe contracts can be authored in
various different ways.

Marlowe contracts can be explored
before they are run in a simulation.

Visual editor

Visual editor Embedded DSL

Visual editor Embedded DSL Contract generator

Assurance

Assurance

USING THE POWER OF LOGIC

Static analysis: automatic verification
of properties of individual contracts.

Verification: machine-supported proof
of system and contract properties.

Static analysis

Can check all execution paths through a Marlowe contract.

All choices, all choices of slots for transaction submission.

Example: is it possible there may not be enough to fulfil a Pay construct?

Constructive: if it is, then here's a counter-example.

Static analysis

Can check all execution paths through a Marlowe contract.

All choices, all choices of slots for transaction submission.

Example: is it possible there may not be enough to fulfil a Pay construct?

Constructive: if it is, then here's a counter-example.

The system is safe

Prove properties of the Marlowe
system once and for all.

Theorem: Accounts are never -ve.

Theorem: Money preservation:

 money_in = money_in_accounts +
 money_out

Theorem: Close produces no warnings.

Theorem: Static analysis is sound and
complete.

And we can do the same for individual
contracts and templates too.

The system is safe

Prove properties of the Marlowe
system once and for all.

Theorem: Accounts are never -ve.

Theorem: Money preservation:

 money_in = money_in_accounts +
 money_out

Theorem: Close produces no warnings.

Theorem: Static analysis is sound and
complete.

And we can do the same for individual
contracts and templates too.

More information about Marlowe

The marlowe and plutus github repositories.

The IOHK research library: search for “Marlowe”.

Online tutorial in the Marlowe Playground.

Alex's presentation coming up next.

Marlowe
A SPECIAL-PURPOSE LANGUAGE
FOR FINANCIAL CONTRACTS

Designed for users, as well as developers.

Designed for maximum assurance.

Assurance
CONTRACTS DO WHAT THEY SHOULD …
 … AND NOT WHAT THEY SHOULDN'T

Language as simple as it can be.

Contracts can be read and simulated.

Before running, can explore all behaviour.

System can be proved safe in various ways.

https://play.marlowe-finance.io/

